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[1] The chaotic-attractor-theory-oriented data assimilation (CDA) method is reviewed. A
scheme based on the singular value decomposition (SVD) analysis, called the 4DSVD,
is then updated to a real four-dimensional scheme for the CDA. This algorithm employs
the SVD to extract the base vectors that span the phase spaces of both model and
observation chaotic attractors. Four groups of experiments are carried out under the perfect
model assumption by using the Lorenz 28-variable model to test the performance of this
scheme in assimilating data. Meanwhile, this scheme is compared with the four-
dimensional variational data assimilation (4DVAR). The results show that the 4DSVD is
effective and efficient in assimilating ‘‘observations’’ to obtain analysis states that are
consistent with model dynamics. The accuracy of the analysis state of the 4DSVD is
similar to that of the 4DVAR; however, the required computational time of the 4DSVD is
much less than that of the 4DVAR, and the 4DSVD also avoids having to estimate the
background error covariance matrix. The results of observation system simulation
experiments carried out using the Weather Research and Forecasting Modeling System
show that the method could generate good analyses by assimilating incomplete
observations. They dalso exhibit the ability of the 4DSVD to constrain the assimilation
using the full model dynamics.

Citation: Wang, J., and J. Li (2009), A four-dimensional scheme based on singular value decomposition (4DSVD) for chaotic-

attractor-theory-oriented data assimilation, J. Geophys. Res., 114, D02114, doi:10.1029/2008JD010916.

1. Introduction

[2] The purpose of data assimilation is to qualitatively
obtain an initial state for the numerical model by combining
the information of the observations with the model dynamics
and physical properties [Daley, 1991]. Many simple data
assimilation methods, such as the polynomial fitting method
[Panofsky, 1949], the successive-correction method (SCM)
[Bergthorsson et al., 1955; Cressman, 1959] and optimal
interpolation (OI) [Gandin, 1963] have been proposed since
the first numerical weather prediction was successfully
produced. In recent years, many advanced data assimilation
methods, such as the four-dimensional variational assimila-
tion (4DVAR) [Courtier, 1997; Zheng, 2003; Kalnay,
2005], the extended Kalman filter (EKF) [Miller et al.,
1994; Zheng, 2003;Kalnay, 2005], and the ensemble Kalman
filter (EnKF) [Evensen, 1997; Kalnay, 2005] have been
developed and applied to data assimilation in atmospheric
and oceanic sciences [Pu and Braun, 2001; Zhu et al., 2002;
Pu and Tao, 2004; Caya et al., 2005; Leeuwenburgh et al.,

2005; Meng and Zhang, 2007]. These data assimilation
methods have been applied toward determining appropriate
initial conditions for the numerical models by assimilating
different observations. Theoretically, the 4DVAR data
assimilation might be the best method to obtain an optimal
analysis state that is consistent with model dynamics by
combining different observations and states delivered from
models using previous observations. Its application to
practical implementation is limited by its large computation
time, although many approximately algorithms [Cao et al.,
2006; Johnson et al., 2006] were proposed to tackle
this problem. Another key factor is the background error
covariance matrix, on which the accuracy of the analyses of
the 4DVAR depends; this factor is difficult to determine
accurately in operational applications. The EnKF was
proposed by Evensen [1994], and has become a popular
data assimilation method in recent years [Evensen, 2006;
Gao and Xue, 2007]. Its advantages include the flow-
dependent background error, the use of a fully nonlinear
model, and simple implementation requiring little effort or
expert knowledge. Several ensemble-based Kalman filter
algorithms have been proposed and successfully applied to
many ideal and realistic cases [Evensen, 1997; Houtekamer
and Mitchell, 2001; Ott et al., 2004; Caya et al., 2005;
Houtekamer and Mitchell, 2005; Shu et al., 2005; Anderson,
2007]. Work remains to be done in matching variational
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assimilation performance with ensemble methods in realistic
scenarios [Houtekamer et al., 2005].
[3] Some of the above mentioned data assimilation

methods are associated with optimal estimation theory.
The cost functions of three-dimensional variational assim-
ilation (3DVAR) and 4DVAR formulations can both be
derived from the Bayesian formulation [Lorenc, 1986],
which is a basic principle of estimation theory used to solve
inverse problems. The EKF is an important method for
estimating the posterior probability distribution for a non-
linear model in an optimal estimation field [Kamen and Su,
1999]. The EnKF can also be derived from the Bayesian
formulation as a suboptimal solution for a Bayesian
problem; it finds the posterior probability distribution given
probability densities for both model predictions and obser-
vations [Evensen and van Leeuwen, 2000].
[4] A novel chaotic-attractor-theory-oriented data assim-

ilation (CDA) method was introduced by Qiu and Chou
[2006] (hereafter QC06). This work attempted to solve the
data assimilation problem in the phase space of a chaotic
attractor, which was spanned by some orthogonal functions
that referred to the base vectors of the atmospheric attractor
in the phase space in order to reduce the degrees of the
undetermined problem. Their paper suggested a CDA
implementation scheme based on the singular value decom-
position (SVD). One deficiency of this method is that it
applies the SVD to the original fields of expanded atmo-
sphere, and therefore it cannot deliver orthogonal base
vectors that separately support the phase spaces of both
the model and observation. For more details about this
method, please refer to QC06.
[5] Recently, J. Wang et al. [2008] (hereafter WLC08)

proposed a three-dimensional scheme employing the SVD
technique to the covariance matrix of both model states and
simulated observation states. Compared with the scheme in
QC06, the scheme in WLC08 could be used to obtain
orthogonal base vectors that spanned the phase space of
chaotic attractors of the model and the observations. The
scheme in WLC08 is also called ‘‘4DSVD’’, like the name
in the QC06 scheme; however, it is only a three-dimensional
method. Some three-dimensional experiments were carried
out to compare the performance of the WLC08 scheme with
that of the QC06 scheme, and revealed that the performance
of the WLC08 scheme is better than that of the QC06
scheme. The scheme in WLC08 is unable to assimilate
simultaneous observations in a time window. In this paper,
we upgrade the 4DSVD inWLC08 to a real four-dimensional
assimilation method that is also called 4DSVD. Note that the
4DSVD scheme used here is different from the algorithm
‘‘4DSVD’’ in either QC06 orWLC08, although they have the
same name. Unless otherwise noted, the 4DSVD referred to
in this paper is the new algorithm.
[6] In this paper, the theory of the CDA is reviewed in

section 2, followed by a real four-dimensional method
4DSVD in section 3. In section 4, some simple numerical
experiments are described using the Lorenz 28-variable
model. The results from the 4DSVD are discussed, and a
comparison with the 4DVAR performance is presented. To
test the performance of the 4DSVD in a more realistic
model, some observation system simulation experiments
(OSSEs) were designed with the Weather Research and
Forecasting (WRF) Modeling System [Skamarock et al.,

2005], as presented in section 5. A brief summary and some
discussions are presented in the last section.

2. Theoretical Description of the CDA

[7] The CDA data assimilation method based on the
theory of chaotic attractor [Li and Chou, 1997; Li, 1997]
was introduced by QC06; the principles are further
described in this section.
[8] In addition to atmospheric models’ attractors [Lions et

al., 1995, 1997], there is a global atmospheric attractor [Li
and Chou, 1997; Li, 1997]. The chaotic attractor of the
atmosphere has a finite dimension and is much smaller than
the degree of freedom of the atmospheric models’ phase
space. Thus the degree of freedom, necessary for describing
the atmospheric flow, is a finite number [Teman, 1991]. As a
result, the underdetermined problems in atmospheric data
assimilation are much less serious than previously thought;
that is to say, if the data assimilation problem could be
solved in the attractor phase space, the data assimilation
problem may not be an underdetermined problem.
[9] The attractor (invariant point set) could be embedded

into the space R2S + 1 on the basis of Whitney’s theory,
where R2S + 1 � RN and 2S + 1 � N, when the dimension of
the attractor is S in an N-dimensional phase space [Zhang
and Chou, 1992]. There is a set of orthogonal base vectors
ei(i = 1, 2,. . .,2S + 1) that is not unique. Base vectors that
support the attractor of the atmosphere or model may
therefore be obtained from atmospheric observation samples
or from numerical model solutions, through which analyses
can be consistent with the model dynamics.
[10] In next section, we propose an algorithm for the CDA.

The key remaining issue of the CDA is how to determine the
proper base vectors spanned attractor and the analysis states
from observations. In this paper, we employ the SVD analysis
technique to obtain both the base vectors and the relationship
between the observation space and the model space.

3. A New Scheme for the CDA

[11] The SVD analysis could be used to determine two
coupled sets of orthogonal singular vectors, as well as the
expansion coefficient correlations from the covariancematrix
of two geophysical fields [Wallace et al., 1992; Cherry,
1996]. So far, the SVD has been widely used in meteorology,
especially in climatology for the detection of coupled modes
of different atmospheric fields [Wang and Fu, 2002; Nan and
Li, 2003; Wang et al., 2003]. Our purpose is to determine
analysis state that is consistent with model dynamics by
mapping observations on the attractor of model phase space
which is spanned by the orthogonal base vectors. The SVD
analysis is an appropriatemethod for finding the coupled base
vectors that support phase spaces of the attractors of both the
model and the observations, as well as forming the correlation
formulation of the expansion coefficients for the coupled base
vectors. The formulation of the 4DSVD implementation
algorithm for the CDA is explained in detail in the following
section.

3.1. Generation of Samples

[12] We integrate a model forward over a long period of
time, starting from any appropriate initial state and selecting
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n samples, denoted by xi for i = 1,2,. . .,n, with the
dimension q from the model outputs.

3.2. Generating Expanded Simulation Observations

[13] Generating the model states xi,j
f at observation times

tj, using each selected sample xi as the initial condition,

x
f
i;j ¼ Mti ;tj xi½ �; ð1Þ

tj 2 ti; ti þ tm½ �

j ¼ 0; 1; 2; . . . ;m
 1;

where Mti;tj is the model-forecasting operator from time ti to
tj, and tj is the time when the jth observation occurs. The
simulated observations yi,j

sim of dimension p(j) at time tj can
then be derived from xi,j

f through

ysimi;j ¼ Hj x
f
i;j

� �
; ð2Þ

where Hj is the observation operator at time tj. The
expanded simulation observation vector yi

sim is obtained by

ysimi ¼ ysimi;0

� �T

; ysimi;1

� �T

; ysimi;2

� �T

; . . . ; ysimi;m
1

� �T
� �T

; ð3Þ

[14] Where ()T is the transposed vector (). The dimension
of the expanded simulation observation vector is then

expressed by p =
Pm
1

j¼0

p (j).

3.3. Generation of Coupled Base Vectors

[15] The SVD technique is employed so that the covari-
ance matrix C, comprising the model state vector and the
corresponding expanded simulation observation vector sam-
ples, is used to obtain base vectors. These vectors span both
the phase space of the model attractors and the simulation
observations in the phase space,

C ¼ XZT ¼ U
E 0

0 0

� �
VT ; ð4Þ

where X is a q � n matrix and Z is a p � n matrix, whose
columns are the anomalies of model state samples and the
expanded simulation observation samples, respectively; U is
the matrix whose columns are the singular vectors of
the model sample space; V is the matrix whose columns
are the eigenvectors of the sample space of the expanded
simulation observations; and E is the diagonal matrix
whose diagonal entries are singular values of the covariance
matrix C.
[16] The matrices X and Z are given by

X ¼ x1 
 �x; x2 
 �x; . . . ; xn 
 �xð Þ ð5aÞ

Z ¼ ysim1 
 ysim; ysim2 
 ysim; . . . ; ysimn 
 ysim
� �

; ð5bÞ

where x0 and ysim are the sample mean or the expected value
of xi,0 and yi

sim, respectively. The singular value diagonal
matrix could be written as

E ¼ diag l1;l2; . . .lrð Þ;

where lk, k = 1,. . .,r are the singular values,

l1 > l2 > . . . > lr:

The singular vectors matrices U and V are given by

U ¼ u1;u2; . . . ;urð Þ ð6aÞ

V ¼ v1; v2; . . . ; vrð Þ; ð6bÞ

where uk and vk are the left and right singular vectors, and r
� min (q, p); a notable feature of the singular vectors is that
they are mutually orthogonal.
[17] Next, we assume that the eigenvectors uk and vk in

equations (6a) and (6b), derived from the sample covariance
matrix, could be considered the base vectors supporting the
phase space of both the model and observation space
attractors. Assuming that the dimension of the atmosphere
attractor is S, any model sample could be expanded by using
the model base vectors,

x
 x ¼
X2Sþ1

k¼1

akuk ; k ¼ 1; . . . ; 2S þ 1ð Þ; ð7aÞ

where ak (k = 1, . . ., 2S + 1) are the expansion coefficients.
Each observation vector could be expanded using the
observation attractor base vectors,

y
 y ¼
X2Sþ1

k¼1

bkvk ; k ¼ 1; . . . ; 2S þ 1ð Þ; ð7bÞ

where bk are the observation expansion coefficients. The kth
pair of expansion coefficients is assumed to have the
relationship

ak ¼ rkbk þ ek ; k ¼ 1; . . . ; 2S þ 1ð Þ; ð8Þ

where rk are coefficients of the linear fitting and ek are
constants. Equation (8) is a general linear regression
problem; rk and ek can be derived from the n pairs of the
expansion coefficients ak and bk via least squares estima-
tion. The sum of squared residual of equation (8) can be

expressed as
Pn
i¼1

(ak,i 
 rkbk,i 
 ek)
2. To minimize the sum

of squared residuals, the rk and ek can be written as

rk ¼

Pn
i¼1

ak;i 
 ak
� �

bk;i 
 bk
� �

Pn
i¼1

bk;i 
 bk
� �2

¼ Cov ak ; bkð Þ
Var bkð Þ ; k ¼ 1; . . . ; 2S þ 1ð Þ ð9aÞ

ek ¼ ak 
 rkbk ; k ¼ 1; . . . ; 2S þ 1ð Þ; ð9bÞ
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where ak and bk are the sample mean of the expansion
coefficients ak,i and bk,i, respectively, and Var(bk) is the
variance of bk.
[18] From these equations, we obtain the base vectors

supporting the attractors of the model and observation
phase spaces. Then the relationship between the expansion
coefficient and the corresponding observation expansion
coefficient is described by equation (8).

3.4. Obtaining the Analysis State by Real Observations

[19] Now we compute the analysis state from the obser-
vations. To obtain the expansion coefficients, the real
observations are mapped to the attractor of the expanded
simulation observation phase space, yielding

yo ¼
X2Sþ1

k¼1

bokvk þ y; k ¼ 1; . . . ; 2S þ 1ð Þ; ð10Þ

where

bok ¼ vTk yo 
 yð Þ and k ¼ 1; . . . ; 2S þ 1ð Þ ð11Þ

are the expansion coefficients of the real observations. We
can then compute the model base vector expansion
coefficients from equation (8).

aak ¼ rkb
o
k þ ek ; k ¼ 1; . . . ; 2S þ 1ð Þ: ð12Þ

Now the analysis state can be computed from the base
vectors of the model phase space attractor and their
expansion coefficients,

xa ¼
X2Sþ1

k¼1

aakuk þ x: ð13Þ

Submitting equations (11) and (12) to equation (13), the
final analysis state can be written in the form

xa ¼
X2Sþ1

k¼1

rkv
T
k yo 
 yð Þuk þ ek

	 

þ x: ð14Þ

[20] From the formulations stated above, we find that if
the error characteristics of the observations change, it is not
necessary to repeat the whole procedure of generating the
SVD. The procedure of the 4DSVD does not depend on
the error characteristics of the observations; thus, even if the
characteristics of the observations change, none of the SVD
generation procedure must be changed. If the types, loca-
tions, and times of the observations change, only the
procedure of generating the simulated observation states
and the SVD must be repeated. This means that once the
samples are generated by integrating the model forward
over enough time that the runs cover the attractor, they can
be used for any situation. In contrast, in real data assimila-
tion situations the model runs for a long time and amasses
large numbers of model states. Consequently, the 4DSVD
could save a lot of computation time. Even the other steps,
generating the simulated observations and obtaining the

base vectors using SVD, require less computation time
compared with the 4DVAR.
[21] There is one distinct difference between 4DSVD and

other data assimilation methods: 4DSVD seeks to solve the
data assimilation problem in the attractor space of the model
and simulation observation on the basis of the chaotic
attractor theory, while others solve the problem in the error
subspace mainly on the basis of estimation theory. The
4DSVD method makes no explicit consideration of the
background and observation uncertainties measured by
error covariance. It only assumes that the column vectors
of U in equation (4) span the phase space of the chaotic
attractors of the dynamic system. This assumption is valid
when there are enough generated samples to cover the
chaotic attractors of the dynamic system, so that the column
vectors of U can span the phase space of the chaotic
attractors of the dynamic system.
[22] The 4DSVD described above can be altered with the

shadowing method. The shadowing method proposed by
Judd and Smith [2001], Judd [2003], and Judd et al. [2004]
attempts to seek a model trajectory that always remains
close to the original observations and the derived analysis
sequences by minimizing a cost function, which is used to
measure the distance a sequence of states are from being a
suitable shadowing trajectory. The gradient descent methods
are used to find the shadowing trajectories. These shadow-
ing methodologies need relatively complete observations,
meaning that each variable on all grids of the model should
be observed; in reality, of course, observations of the
atmosphere are incomplete. Therefore, a series of analyses
obtained by data assimilation methods like 3DVAR are a
necessary precondition for applying shadowing methodolo-
gies. As Judd et al. [2004] pointed out, the shadowing
techniques are not necessarily intended to be a replacement
for data assimilation methods such as 3DVAR, but rather to
augment them so as to provide better analyses. However,
the 4DSVD method is a new data assimilation method,
which cannot only interpolate the incomplete observations
into full model grids but also ensures that the analyses are
consistent with the model dynamics.

4. Some Simple Experiments With the Lorenz
28-Variable Model

[23] In this section, some numerical experiments are
designed using the Lorenz 28-variable model to examine
the performance of the 4DSVD scheme (described in
section 3) under the perfect model scenario.

4.1. Model and the Reference State

[24] The Lorenz 28-variable model was introduced by
Lorenz [1965], consisting of 28 variables and some physical
parameters. Some details of this model were subsequently
studied by Reinhold and Pierrehumbert [1982]. To some
extent, the dynamic behavior of this model is determined by
the forcing parameter q0*. It was proven that the chaotic
attractors of the model exist at some special value of the
forcing parameter q0* [Krishnamurthy, 1993]. More details
of the characters and behaviors of the Lorenz 28-variable
model have been discussed in numerous studies [Lorenz,
1965; Reinhold and Pierrehumbert, 1982; Krishnamurthy,
1993].
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[25] In this paper, the value of the forcing parameter q0* is
set to 0.15, because chaotic attractors exist at this value. The
values of the other parameters are held the same as those used
in Krishnamurthy’s research [Krishnamurthy, 1993].
[26] We perform data assimilation experiments with the

numerical version of the Lorenz 28-variable model. The
fourth-order Runge-Kutta scheme is used for time integra-
tion. The time step is Dt = 0.001 in nondimensional units.
[27] Assuming the model is perfect, the model is run

forward in time for a long time period starting from an
initial condition. An output value is then selected as the true
initial condition. The reference state is obtained by integrat-
ing the model with this initial condition.

4.2. Observations

[28] The observations are defined by perturbing the refer-
ence state, where perturbations are drawn from a white noise
Gaussian distribution. The variance of the observations error
is set to 10% of the variance of the reference values, where
this means that the errors of different variables are different.
[29] All variables are observed in all experiments. Hence,

the observation operator for this study is a linear (identity)
transformation operator, defined as H (x) = x.

4.3. Sampling Strategy and Sampling Size

[30] Samples are selected from the model output by
running the model starting from a random initial condition.
To ensure the samples are linearly independent, samples are
selected every 100 time steps. Although this strategy may
not be the most efficient, it can generate good base vectors.
Using this method, 300 samples are selected for all 4DSVD
experiments in this paper. This large number is chosen to
ensure there are sufficient samples representing the attractor
of the model to obtain good base vectors.

4.4. Experiments Setup

[31] To ensure consistency between the 4DSVD and
4DVAR experiments, we use the same reference state and
observations for the assimilation experiments. The assimi-
lation time window is set to [0, 1.0]. There are four
experimental groups, ExpG1, ExpG2, ExpG3, and ExpG4,
with observations at time intervals 0.1, 0.2, 0.5, and 1.0. In
each group, 30 independent experiments are performed at
different initial times using different observations with
different observation errors.
[32] For the 4DVAR experiments under the perfect model

scenario, the constant observation error covariance is com-
puted using the observation error explained above. The
background is randomly selected from the outputs of the
model, and the background error covariance is computed
using the climate covariance of ‘‘true’’ model states. The
nonmonotone gradient-projection algorithm SPG2 [Birgin
et al., 2000], which has been applied widely in optimal
problems, is used to optimize the cost function [Duan et al.,
2004; Mu and Zhang, 2006; Mu et al., 2007a, 2007b].
[33] The accuracy of analysis states is measured by the

analysis error of all the variables using root mean squared
errors (RMS), as expressed by

ea ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xa 
 xtð ÞT xa 
 xtð Þ

28

s
:

The average analysis errors of all the experiments in each
group are also computed,

eaave ¼
1

ne

Xne
i¼1

eai ;

where ne is the number of experiments.

4.5. Results

[34] Figures 1a and 1b show the analysis errors of
different experiments at the initial assimilation time. Figure 1a
presents 4DSVD, which uses 28 base vectors; it can be seen
herein that almost all the analysis errors of the 4DSVD are
smaller than the observation errors as calculated in an
RMS sense under different observation intervals. That is,
for each experiment, the initial conditions for the model
improve significantly by assimilating observations using
4DSVD. The analysis errors of experiments in ExpG1 are
the smallest of the four groups, while those of ExpG4 are
the largest. For all these experiments, more observations in
the fixed assimilating time window lead to more accurate
analysis states. The analysis errors are nearly the same,
although the values of observation errors in different
experiments within the same experiment groups differ
greatly. This may imply that analysis errors may be
determined by the statistic characters of the observation
errors, although the observation error covariance is not
explicitly used in 4DSVD. Moreover, it implies that the
4DSVD method only needs limited observations to deliver
good analyses for a specific problem and it means that
additional observations may do little to improve the initial
conditions. The analysis errors of 4DVAR are shown in
Figure 1b. For ExpG1 and ExpG2, the analysis errors are
much smaller than the observation errors, whereas the
analysis errors of experiments in ExpG3 and ExpG4 are
equal to or even greater than the observation errors. The
analysis errors increase rapidly with decreasing numbers of
observations. Figure 1c shows the difference between the
4DVAR and the 4DSVD analysis errors (the 4DVAR
minus the 4DSVD). Comparing the analysis errors of the
two methods shows that the analysis states generated by
assimilating observations via 4DVAR are more accurate
than those from 4DSVD are when there are many obser-
vations. This is the case in ExpG1, where the average
analysis error difference (the 4DVAR minus the 4DSVD)
is 
8.9 � 10
4. The performance of the 4DVAR and
4DSVD are comparable with sufficient numbers of obser-
vations, such as in ExpG2 and ExpG3 where the average
analysis error differences (the 4DVAR minus the 4DSVD)
are 
4.8 � 10
4 and 6.8 � 10
4, respectively. The
performance of 4DVAR is inferior to 4DSVD in ExpG4,
where there was an insufficient number of observations in
the data assimilation time window; its average analysis
error difference is 1.2 � 10
3. These results suggest that
given enough observations, the 4DSVD method would be
capable of improving the initial conditions of all the experi-
ments; and further, that its performance is comparable with,
and sometimes superior to, 4DVAR.
[35] Moreover, the computation time required for 4DSVD

is much less than that for 4DVAR. For example, the 4DSVD
needs about 6277 s of CPU time to complete all 30 experi-
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ments of the group ExpG1, while the 4DVAR takes about
16 times longer at 98,000 s of CPU time. It is a major
advantage of the 4DSVD method that under the same
conditions, much less computation time is required than
with 4DVAR to achieve similar analysis states.
[36] Figure 2 presents the average analysis errors during

the assimilation time window. The analysis errors are shown
to be stable during the assimilating time window for all
situations. This illustrates that the analysis states of 4DSVD
may be consistent with both model dynamics and the
analysis states of 4DVAR. These results indicate that
4DSVD may have the ability to ensure consistency between
analysis state and model dynamics, which would represent
yet another advantage of this method compared with other
simple ones like 3DVAR. However, more evidence would
be required to prove this point. Figure 2 shows that the
analysis errors from 4DSVD and 4DVAR can have quite
different dependencies on the observation time interval; this

phenomenon is an interesting and important issue. Possible
explanations for the different dependencies are discussed in
section 6.
[37] Another important issue for 4DSVD is determining

how many base vectors are needed. Figure 3 shows the
average of the analysis errors as a function of the number of
base vectors. For all experiments in all four groups (ExpG1,
ExpG2, ExpG3, and ExpG4) the same relationship exists:
the analysis error decreases with increasing number of base
vector, although the data assimilation intervals and the
number of observations are different. This phenomenon
may reflect the nature of the model, as the dimension of
its chaotic attractor is not changed. The analysis errors are
the smallest when the number of the base vectors is 28; this
result might be confusing since the optimal truncation
number is as large as the dimension of the model. In fact,
it could call into question the advantage of having large
degrees of the freedom for the real atmosphere or ocean

Figure 1. (a) Analysis errors of 4DSVD for the experiment groups ExpG1, ExpG2, ExpG3,
and ExpG4. The observation errors are indicated by closed circles. (b) Same as Figure 1a but for 4DVAR.
(c) Difference in the analysis errors of 4DVAR and 4DSVD.

Figure 2. Averaged analysis errors of all the experiments in groups ExpG1 (solid line), ExpG2 (dashed
line), ExpG3 (dotted line), and ExpG4 (dash-dotted line) in the assimilation time window. (a) 4DSVD.
(b) 4DVAR.
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model of the 4DSVD. According to the theory of the CDA,
the number of the base vectors is determined by the
dimension of the chaotic attractors of the model. For the
Lorenz 28-variable model used here, the Lyapunov dimen-
sion, which is a good estimate of the dimension of the chaotic
attractors [Farmer et al., 1983], is about 13 [Krishnamurthy,
1993]. According to Whitney’s theory the chaotic attractors
could be embedded into space R28, where the analysis errors
would then reach the minimum value when using 28 base
vectors in these experiments. The dimension of the atmo-
sphere model’s chaotic attractors is much smaller than
the degree of the freedom of the model, as mentioned in
section 3. Thus, the optimal truncation number of the base
vectors is much smaller than the dimension of atmospheric
model. To confirm this assertion, and to test the performance

of 4DSVD in more realistic model, more experiments are
carried out using the WRF model.

5. Observation System Simulation Experiments
With the WRF Model

[38] Observation system simulation experiments (OSSEs)
are usually conducted to assess the potential impact of
instruments or observing systems that are proposed or under
construction [Miller, 1990; Atlas, 1997; Liu and Rabier,
2003; Lahoz et al., 2005], and to evaluate the data assim-
ilation methodology [Kuo and Guo, 1989; Bishop et al.,
2001; Xue et al., 2006; Etherton, 2007; Qiu et al., 2007; X.
Wang et al., 2008]. In this section, some OSSEs are
designed using the WRF model in order to evaluate the
4DSVD scheme.

5.1. Model, the True State, and Observations

[39] The Advanced Research WRF (ARW) Modeling
System [Skamarock et al., 2005] version 3 is used to test
the performance of the 4DSVD. As an initial attempt to test
the 4DSVD in a realistic atmospheric model with limited
computational resources, some relatively simple and man-
ageable observation system simulation experiments are
designed.
[40] Experiments are performed by running the WRF

model on a domain whose center is located at (25�N,
112�E) in eastern Asia (Figure 4). The modeling domain
is setup with 40 � 60 horizontal grid points at 30 km
resolution and 27 vertical levels and a model top 50 hPa.
[41] The model is assumed to be perfect. The initial

conditions and lateral boundary conditions (LBCs) are
generated using NCEP ‘‘Final’’ analysis (FNL, https://
dss.ucar.edu/datazone/dsszone/ds083.2). The nature run
(the ‘‘truth’’) is obtained by integrating the model from
time t = 
24 h to the analysis time t = 0 using the above
initial conditions and LBCs.
[42] The simulated observations of radiosonde tempera-

ture and u and v wind components are generated by adding
Gaussian random noise to the WRF nature run (the

Figure 4. WRF domain (full domain) and a snapshot of radiosonde observation network (black dots).

Figure 3. The 4DSVD averaged analysis errors of all the
experiments in groups ExpG1 (solid line), ExpG2 (dashed
line), ExpG3 (dotted line), and ExpG4 (dash-dotted line) as
a function of base vector number.
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‘‘truth’’). We assumed the positions of the radiosonde
stations to be the same as those of the surface stations.
The positions of the fixed surface stations are obtained from
the operational observation data sets from the China Mete-
orological Administration (CMA). Figure 4 shows the
horizontal distribution of the radiosondes. The simulated
observation time interval is set to 12 h. The vertical profile
of the observation errors is shown in Figure 5. The random
noise used to generate simulated observations is drawn from
a Gaussian distribution with a mean of zero and standard
deviations equal to the observation errors.

5.2. Sampling Strategy

[43] We choose 500 days between 1 January 1998 and
30November 2007, with 7-day intervals. Themodel was then
run for 60 h, starting at time 0000 UTC of these 500 days.
The initial conditions and LBCs are generated using FNL
analysis. One sample is chosen from one model simulation
after 60 h of integration, to confirm some extent of indepen-
dence of the samples. Therefore, the sample size is 500, and
all experiments in this section use these 500 samples.

5.3. Experiments Setup

[44] The data assimilation time window is set to [0, 12]
hours, which means that there are two observation time
levels in each experiment. To evaluate the performance of
4DSVD for these realistically incomplete observations, the
potential temperature T and u and v wind components are
analyzed. In addition, to assess the ability of 4DSVD to
reconstruct the nonobserved variables, the water vapor
mixing ratio q is analyzed. The simulation started at 0000
UTC 1 December 2007 and lasted for 4 weeks. To save
computational resources, the observations are assimilated
every 48 h for 4 weeks; thus there are a total of 14
independent experiments.

5.4. Results

[45] Figure 6 shows the RMS analysis errors of 4DSVD as
a function of model levels. The RMS analysis errors of the
potential temperature and wind are much smaller than the
observation errors, implying that 4DSVD is able to assimilate
the incomplete observations and generate good analyses for
the model. In addition, the RMS analysis errors of water
vapor mixing ratio are relative small. These results illustrate
that 4DSVD is able to generate good analyses not just for
observed variables, but also nonobserved variables. This
performance exhibits the ability of 4DSVD to use the full
model dynamics in constraining the assimilation. Figure 7
shows the details of the true fields and analysis fields of one
case, at eta = 0.995 level and at time 0000 UTC 1 December
2007. The analyzed state is very similar to the true state.
[46] Figure 8 is the optimal truncation number of base

vectors for all experiments. The optimal truncation numbers
of the base vectors is found to be much smaller than the
dimension of the analyzed variables. On the other hand, the
optimal truncation numbers are different for different times.
This implies that the optimal truncation number of base
vectors is related to other factors in addition to the smallness
of the Lyapunov dimension of the dynamic system’s chaotic
attractor. Some discussions about how to determine the
optimal truncation number of base vectors are presented
in section 6.

6. Summary and Discussions

[47] In this paper we review a data assimilation method
called CDA, and propose an implementation algorithm

Figure 5. Vertical profile of the errors of observations for
wind (dashed line) and temperature (solid line).

Figure 6. Vertical profiles as a function of model eta
levels of the analysis errors for the potential temperature
(solid line; unit: K), wind (short-dashed line; unit: m/s), and
water vapor mixing ratio (long-dashed line; unit: g/kg). The
pressure on the right axis was calculated from the eta levels,
model top pressure of 50 hPa, and approximated surface
pressure of 1000 hPa.
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called 4DSVD. Some simple experiments are carried
out to test the performance of 4DSVD, using the Lorenz
28-variable model under the perfect model assumption. The
performance of 4DSVD and 4DVAR are compared under
the same conditions. Evaluating the performance of the
4DSVD using realistic observations in a more realistic
atmospheric model, some OSSEs are designed with the
WRF model.
[48] The 4DSVD method is able generate good analysis

states that may be consistent with model dynamics. The
performance of the 4DSVD is comparable to or even better
than the performance of 4DVAR under some special
situations, such as when the number observations are
insufficient within fixed assimilation time window. It is also
important that 4DSVD could save significant computational
time cost compared with 4DVAR, while delivering nearly the
same accuracy. Moreover, 4DSVD avoids having to estimate
the background error covariance matrix; this calculation is
difficult to estimate accurately, and its precision determines
the accuracy of the 4DVAR analyses. The 4DSVD method is
effective and efficient for assimilating observations under the
perfect model scenario.
[49] The 4DSVD method is robust even when the obser-

vations are incomplete in a more realistic model like the

WRF; it can deliver good analyses not only for observed
variables but also nonobserved variables. Moreover, the
method is able to use full model dynamics to constrain
the assimilation. The optimal truncation number of base
vectors is much smaller than the dimension of the model
state vector, which means that 4DSVD could significantly
reduce the dimension of the data assimilation problem. The
optimal truncation number of base vectors for the support-
ing attractor is related to other factors in addition to the
smallness of the Lyapunov dimension of both the model
system and observation chaotic attractors.
[50] The sampling strategy in section 5 suggests that the

4DSVD samples can be selected by an operational weather
forecast system from historical operational forecast states.
All the numerical results imply that 4DSVD is a good
potential data assimilation method.
[51] Although we performed some ideal experiments

under perfect model situations, and further tested the
4DSVD method with some OSSEs using more realistic
models, the performance of 4DSVD under imperfect model
and realistic observational situations requires further exam-
ination with more experiments. Many other important issues
associated with 4DSVD also need to be studied further. A
sophisticated strategy is needed for the selection of samples
to generate the base vectors that support the chaotic attrac-
tors. The minimum number of sufficient samples also needs
further investigation. One positive aspect is that through real
applications, the operational model has generated many
historical model states that could offer enough samples for
4DSVD. Selecting samples from these historical model
states may be a good sample strategy for use with the
OSSEs. In the future, we will focus on proposing a robust
sample strategy. Further investigation is also needed to
determine the optimal truncation number of the base vec-
tors, because the optimal truncation number of the base
vectors is related to other factors beyond the dimension of
the chaotic attractor of the model system. The impact of
4DSVD on operational forecasts should be paid more
attention. The ability of the 4DSVD to simultaneously
assimilate nonconventional observational data will have to
be evaluated; assessing, for example, the incorporation of
satellite radiance and Doppler shifts, which are usually

Figure 7. (a) True state and (b) analysis state at the eta =
0.995 level of one case at 0000 UTC 2 December 2007.
Contour indicates the water vapor mixing ratio (g/kg), color
shading indicates perturbation potential temperature (K),
and arrows indicate wind (m/s). The optimal truncation
number of the base vectors for this case is 99. The RMS
errors are 0.80 K, 1.68 m/s, and 0.92 g/kg for potential
temperature, wind speed, and water vapor mixing ratio,
respectively.

Figure 8. Optimal truncation numbers of the base vectors
for all experiments.
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assimilated into models using the 3DVAR [Gao and
Droegemeier, 2004; Gao et al., 2001; Pu et al., 2008].
[52] An interesting phenomenon is presented in section 4,

showing that the analysis errors from 4DSVD and 4DVAR
can have different dependencies on the observation time
interval. There are several possible reasons for this. The
4DVAR method seeks the solution of the data assimilation
problem in the error subspace. When the observation time
interval is larger, the number of observations is not large
enough for 4DVAR. In this case, the data assimilation
problem in 4DVAR may be underdetermined, and its
solution may be not unique, so the 4DVAR may not achieve
the most optimal analysis state or extract enough informa-
tion from the limited observations. However, when the
observation time interval is smaller, there are enough
observations for 4DVAR. In this case, the data assimilation
problem in 4DVAR may be not underdetermined, and the
method could extract more information from the observa-
tions to more accurately estimate the analysis state. The
analysis errors decrease significantly with the decrease in
observation time interval. The 4DSVD method significantly
reduces the dimension data assimilation problem, which is
not an underdetermined problem even when the observa-
tions are incomplete. On the other hand, 4DSVD can extract
some information from the model-generated samples. A few
observations can be enough for 4DSVD to estimate analysis
states with small errors; more observations would not
significantly reduce the analysis errors. These results imply
that when the observations are limited, the performance of
4DSVD may be superior to 4DVAR. Many experiments of
different types will be required to explain the reasons for
these different dependencies, and to clarify the conditions
under which 4DSVD can out-perform 4DVAR.
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